第313章 艾维琳的直觉(下)
“……”
长椅上。
看着一脸虚心求教表情的艾维琳,徐云的表情不由有些微妙。
众所周知。
人有三大幻觉:
有人找我。
我能反杀。
他/她喜欢我。
作为一名很有逼数的后世来人。
徐云虽然没有自恋到妹子会和自己表白的地步,但在听到这姑娘有问题要问自己的时候,多少还是下意识的以为对方会冒出些和自己来路有关的话。
结果没想到……
艾维琳所说的问题,还真是一个问题?
斐波那契数列。
这是一个非常非常有名的数学谜团,在数学和生活以及自然界中都极其有用。
斐波那契数列最早可以追溯到公元7世纪,当时印度有个数学家叫做gop。
此人在研究箱子包装物件长度恰好为1和2时的方法数时首先描述了这个数列,也就是下面这个问题:
有n个台阶,你每次只能跨一阶或两阶,上楼有几种方法?
接着这个问题再一次变化,进阶成了更有名的兔子谜团:
假设兔子在出生两个月后就有繁殖能力,一对兔子每个月能生出一对小兔子。
如果所有兔子都不死,那么一年以后可以繁殖多少对兔子?
这个问题最终由斐波那契归纳成了一个数列,也就是:
0,1,1,2,3,5,8,13,21,34,55,89,144,233,377……这样一个无限数列。
它的特点是后一个数字是前两个数字之和,0+1=1,1+1=2,1+2=3往后类推……
而且用前一个数字来除以后一个数字,就无限接近于黄金分割数0.618。
这个数列用公式表达的话则是xn=x(n-1)+x(n-2),其中x0=0,x1=1。
小说《达芬奇密码》中。
卢浮宫馆长被人杀害陈尸在地板上,当时馆长脱光了衣服,摆成达·芬奇名画维特鲁威人并且留下了一些奇怪的密码。
而这些让人难以琢磨的密码,正是斐波那契数列。
自然界中的蜜蜂家谱、松果叶序甚至瓜果外形都和斐波那契数列有关——2005年曹则贤教授与中国科学院物理研究所合作,利用银核和氧化硅壳研究直径约10微米的微结构中的应力。
最终通过操纵银核和二氧化硅壳构成的无机微结构上的应力,顺利的产生了斐波那契螺旋图案。
数学和物理越深入研究,就越会感叹生命的奇妙。
对了。
既然说到了曹则贤教授,这里就顺带简单辟个谣。
这位曹则贤教授也是个争议性很大的名嘴,他是科技部973纳米材料项目的首席科学家,百人计划级别的大佬。
不过嘴中经常会冒出一些比较离谱的观点,其中有真也有假。
例如他曾经在国科大的讲座上说过这么一句话:
“有85%的数学和物理知识没有传入华夏,这些知识都被外国人紧紧捂着。”
这句话其实是有些唬人的,有点刻意为人设而口出狂言的味道。
谁都知道国外必然有一些知识没有与咱们共享,但那些内容主要涵盖于前端领域,并且决然没有85%这么离谱。
于是呢。
当时被和他一起说出口、用于佐证以上观点的另一句话,在网上便也成了笑谈:
“你们不知道吧,三角形有44072个心。”
但实际上这句话是正确的,并且是一个非常正式的数学研究方向。
只不过它是隶属于初等平面几何的结论,平几早就不再是前端数学的研究方向了,对于大多数人来说基本上用不到。
所以这个知识不是没传入国内,而是教了也没啥意义——哪怕是国外顶尖大学的顶尖竞赛班,也不会对这些三角心进行研究。
一般来说。
普通人只需要掌握五心,学几何的顶多顶多掌握50种就到顶了。
再往后差不多属于纯理论的范畴,极其冷门且偏僻。