只不过徐云在这里留了一手,没有告知小牛n为负数的时候就是无穷级数这件事。
因为按照正常的历史线,无穷小量可是出自小牛之手,推导的过程还是交给他本人就好了。
就这样过了几分钟,小牛方才回过神。
只见他直接无视了身边的徐云,一个身位窜回座位,飞快的开始演算了起来。
看着全身心投入计算的小牛,徐云也不生气,毕竟这位祖师爷就是这种脾气,可能也就在威廉·艾斯库的面前会相对好点了。
沙沙沙——
很快。
笔尖与稿纸接触的声音响起,一道道公式被飞快列出。
徐云见状思索片刻,转身离开了屋子。
随意在墙角找了个位置,抬头看起了云卷云舒。
就这样,两个小时一转而过。
就在徐云盘算着自己下一步该如何落子的时候,木屋门忽然被人从中推开,小牛一脸激动的从内中窜了出来。
只见他的眼中布满了血丝,用力的朝徐云挥了挥手中的稿纸:
“肥鱼,负数、我推出了负数!一切都搞清楚了!
二项式指数不用去管它是正数还是负数,是整数还是分数,组合数对所有条件都成立!
杨辉三角,对,下一步就是研究杨辉三角!”
也不知道是不是太过激动的缘故,小牛压根没注意到,自己的假发都被震落到了地上。
看着满脸红光的小牛,徐云心中也不由浮现出了一丝改变历史的振奋感。
按照正常轨迹。
小牛要等到明年一月份收到一封约翰·提斯里波蒂的信件后,才会开窍般的攻克一系列的疑点难点。
而约翰斯里波蒂的那封信件中,提及的正是帕斯卡公开的三角图形。
也就是说……
这个时空数学史的节点,第一次被改变了!
有了二项式开展的初步成果,小牛必然要不了多久时间,便会在杨辉三角的协助下构筑出初步的流数术模型。
由此一来。
杨辉三角这个名字,也将会被镌刻在数学王座的基底之上,那个本就该属于它的位置!
纵使今后数百年世事变迁,沧海桑田,依旧无人能够撼动!
华夏先贤之光,在这条时间线里将永不蒙尘!
想到这儿,徐云不由深吸一口气,快步走上前:
“恭喜您了,牛顿先生。”
看着面前东方面孔的徐云,小牛的脸上也裸露了一股感慨。
那位未曾谋面的韩立爵士,仅仅是留下的几处随笔就能为自己拨云见日,仅假借肥鱼这个不知相隔多少代的弟子之手,便能为自己推开一扇大门。
那么韩立爵士本人的学识又能达到什么样的高度呢?
能想出这种展开式的天才,称得上一句数学鬼才绝不为过吧?
原本自己以为笛卡尔先生已经天下无敌了,没想到居然还有人比他更为勇猛!
看来自己的数理之路,依旧任重道远啊……
第26章 命中注定的相遇(上)
韩(tai)立(le)展开的出现对于小牛而言无异于天降甘霖,在为他解决n在非整数情况下的化简展开形式的同时,还给他推开了一扇全新的大门。
因此在接下来的两天时间里,小牛几乎寸步未离屋子,不停的在对相关公式进行优化。
诚然。
这点时间对于小牛来说还不够系统的定义无穷小量——毕竟按照历史,这个概念要到1704年才会正式在书面提出,加速也不至于一夜破壁。
但除此以外,小牛却也优化出了其他一些表象形式:
比如用a^1/2来代替√a,用a-1来代替1/a等等。
这种符号的变化对于后世之人来说早就习以为常,但在这个对于指数还非常生疏的时代,这种表象形式的变化却是一种极其大胆的操作。
等小牛把以把对有限项等式的一般分析推广到无限表达式后,距离正式推导万有引力公式就不会很遥远了。
另外在这几天里,徐云则做起了送餐员——小牛在进入状态后简直是废寝忘食,有一次如果不是徐云在一旁看着,小牛真就会把墨水当成开水给喝进去了。
不过另一方面,徐云的努力倒也没白费:
虽然没有任务完成的提示,但小牛已经逐渐开始认同了徐云的能力:
他偶尔会和徐云聊上几句天,并且探讨的还是数理方面的一些问题。